Ramanujan’s eta-products and binary quadratic forms

Frank Patane

University of Florida

October 15, 2015
Definitions

We will always take q to be a complex number with $|q| < 1$ and p to be a prime.
Definitions

We will always take q to be a complex number with $|q| < 1$ and p to be a prime.

We will use the standard notation of

$$ (a; q)_{\infty} := \prod_{n=0}^{\infty} (1 - aq^n), \quad (1.1) $$

$$ E(q) := (q; q)_{\infty}, \quad (1.2) $$
Define $a_k(n)$ by

\[\sum_{n=1}^{\infty} a_k(n)q^n := qE(q^k)E(q^{24-k}). \] (1.3)
Define $a_k(n)$ by

$$
\sum_{n=1}^{\infty} a_k(n) q^n := qE(q^k)E(q^{24-k}).
$$

Ramanujan found the Dirichlet series $\sum_{n>0} \frac{a_k(n)}{n^s}$ has an Euler product when $k = 1, 2, 3, 4, 6, 8, 12$ [R1], [R2]. He explicitly gave the Euler product for $k = 1, 2, 3$ and determined the Fourier coefficients of the product.
Define $a_k(n)$ by

$$\sum_{n=1}^{\infty} a_k(n) q^n := qE(q^k)E(q^{24-k}).$$ \hfill (1.3)

Ramanujan found the Dirichlet series $\sum_{n>0} \frac{a_k(n)}{n^s}$ has an Euler product when $k = 1, 2, 3, 4, 6, 8, 12$ [R1], [R2]. He explicitly gave the Euler product for $k = 1, 2, 3$ and determined the Fourier coefficients of the product.

In addition to weight 1 products, Ramanujan also considered products of higher weight.
Define $a_k(n)$ by

$$\sum_{n=1}^{\infty} a_k(n) q^n := qE(q^k)E(q^{24-k}).$$

(1.3)

Ramanujan found the Dirichlet series $\sum_{n>0} \frac{a_k(n)}{n^s}$ has an Euler product when $k = 1, 2, 3, 4, 6, 8, 12$ [R1], [R2]. He explicitly gave the Euler product for $k = 1, 2, 3$ and determined the Fourier coefficients of the product.

In addition to weight 1 products, Ramanujan also considered products of higher weight.

We now develop the theory of binary quadratic forms and find the connection between weight 1 eta-products and representations by forms.
For $a, b, c \in \mathbb{Z}$ we denote the binary quadratic form $f(x, y) := ax^2 + bxy + cy^2$ as (a, b, c).
For $a, b, c \in \mathbb{Z}$ we denote the binary quadratic form $f(x, y) := ax^2 + bxy + cy^2$ as (a, b, c).

The form (a, b, c) is called \textit{primitive} if $\gcd(a, b, c) = 1$.
For $a, b, c \in \mathbb{Z}$ we denote the binary quadratic form $f(x, y) := ax^2 + bxy + cy^2$ as (a, b, c).

The form (a, b, c) is called \textit{primitive} if $\gcd(a, b, c) = 1$.

The \textit{discriminant} of (a, b, c) is defined to be $d := b^2 - 4ac$, and we note that $d \equiv 0, 1 \pmod{4}$.
For $a, b, c \in \mathbb{Z}$ we denote the binary quadratic form $f(x, y) := ax^2 + bxy + cy^2$ as (a, b, c).

The form (a, b, c) is called primitive if $\gcd(a, b, c) = 1$.

The discriminant of (a, b, c) is defined to be $d := b^2 - 4ac$, and we note that $d \equiv 0, 1 \pmod{4}$.

For a discriminant d the conductor of d is the largest positive integer f such that $\frac{d}{f^2} \equiv 0, 1 \pmod{4}$.
For $a, b, c \in \mathbb{Z}$ we denote the binary quadratic form $f(x, y) := ax^2 + bxy + cy^2$ as (a, b, c).

The form (a, b, c) is called primitive if $\gcd(a, b, c) = 1$.

The discriminant of (a, b, c) is defined to be $d := b^2 - 4ac$, and we note that $d \equiv 0, 1 \pmod{4}$.

For a discriminant d the conductor of d is the largest positive integer f such that $\frac{d}{f^2} \equiv 0, 1 \pmod{4}$.

It is easy to show $d < 0 < a$ implies $f(x, y) \geq 0$ for all $x, y \in \mathbb{Z}$. Such forms are called positive definite. This presentation only considers positive definite forms.
We say two binary quadratic forms \(f(x, y), g(x, y) \) are equivalent if there exists a matrix

\[
\begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}
\]

in \(SL(2\mathbb{Z}) \) such that

\[f(\alpha x + \beta y, \gamma x + \delta y) = g(x, y), \]

and we say \(f \sim g \).
\[\sim \] is an equivalence relation on the set of forms of a fixed discriminant.
\sim is an equivalence relation on the set of forms of a fixed discriminant.

Since \(f \sim f \), we ask how many \(M \in \text{SL}(2\mathbb{Z}) \) fix a given form \(f \). We call such an \(M \) an automorph of \(f \).
\(\sim\) is an equivalence relation on the set of forms of a fixed discriminant.

Since \(f \sim f\), we ask how many \(M \in \text{SL}(2\mathbb{Z})\) fix a given form \(f\). We call such an \(M\) an automorph of \(f\).

The answer is any positive definite form \(f\) has exactly 2 automorphs, except when \(f = (1, 0, 1)\) or \(f = (1, 1, 1)\).
\(\sim\) is an equivalence relation on the set of forms of a fixed discriminant.

Since \(f \sim f\), we ask how many \(M \in \text{SL}(2\mathbb{Z})\) fix a given form \(f\). We call such an \(M\) an automorph of \(f\).

The answer is any positive definite form \(f\) has exactly 2 automorphs, except when \(f = (1, 0, 1)\) or \(f = (1, 1, 1)\).

We define the number of automorphs associated with the discriminant \(d\) as \(w(d)\) and we find

\[
w(d) = \begin{cases}
6 & \text{if } d = -3 \\
4 & \text{if } d = -4 \\
2 & \text{if } d < -4.
\end{cases}
\]
We define $H(d)$ to be the set of primitive binary quadratic forms of discriminant d modulo the equivalence relation \sim.
We define $H(d)$ to be the set of primitive binary quadratic forms of discriminant d modulo the equivalence relation \sim. It is an elementary result that $|H(d)|$ is finite. We call $|H(d)|$ the *class number* of discriminant d [D.].
We define $H(d)$ to be the set of primitive binary quadratic forms of discriminant d modulo the equivalence relation \sim.

It is an elementary result that $|H(d)|$ is finite. We call $|H(d)|$ the class number of discriminant d [D.].

It is well-known that $H(d)$ has an abelian group structure, and is called the class group of discriminant d.
We define $H(d)$ to be the set of primitive binary quadratic forms of discriminant d modulo the equivalence relation \sim.

It is an elementary result that $|H(d)|$ is finite. We call $|H(d)|$ the class number of discriminant d [D.].

It is well-known that $H(d)$ has an abelian group structure, and is called the class group of discriminant d.

We now motivate the composition (multiplication) of two binary quadratic forms.
Brahmagupta’s identity

\[(x_1^2 + y_1^2)(x_2^2 + y_2^2) = (x_1 x_2 + y_1 y_2)^2 + (x_1 y_2 - y_1 x_2)^2\]

was first found in Diophantus’ *Arithmetica* (*III, 19*). This identity shows the group law for the form \((1, 0, 1) \in H(−4)\).
Brahmagupta’s identity

$$(x_1^2 + y_1^2)(x_2^2 + y_2^2) = (x_1x_2 + y_1y_2)^2 + (x_1y_2 - y_1x_2)^2$$

was first found in Diophantus’ *Arithmetica* (III, 19). This identity shows the group law for the form $(1, 0, 1) \in H(-4)$.

The above identity was rediscovered by the Indian mathematician Brahmagupta, and Brahmagupta showed more:

$$(x_1^2 + ny_1^2)(x_2^2 + ny_2^2) = (x_1x_2 + ny_1y_2)^2 + n(x_1y_2 - y_1x_2)^2.$$
Brahmagupta’s identity

\[(x_1^2 + y_1^2)(x_2^2 + y_2^2) = (x_1x_2 + y_1y_2)^2 + (x_1y_2 - y_1x_2)^2\]

was first found in Diophantus’ *Arithmetica* (III, 19). This identity shows the group law for the form \((1, 0, 1) \in H(-4)\).

The above identity was rediscovered by the Indian mathematician Brahmagupta, and Brahmagupta showed more:

\[(x_1^2 + ny_1^2)(x_2^2 + ny_2^2) = (x_1x_2 + ny_1y_2)^2 + n(x_1y_2 - y_1x_2)^2.\]

Similarly we have

\[(x_1^2 + x_1y_1 + y_1^2) \cdot (x_2^2 + x_2y_2 + y_2^2)\]

\[= X^2 + XY + Y^2,\]

where

\[X = x_1x_2 - y_1y_2, \quad Y = x_1y_2 + y_1x_2 + y_1y_2.\]
A generalization which shows the multiplication of two forms of discriminant \(d \) is given by:
A generalization which shows the multiplication of two forms of discriminant d is given by:

$$(n_1, B, \frac{B^2 - d}{4n_1}) \cdot (n_2, B, \frac{B^2 - d}{4n_2}) = (n_1 n_2, B, \frac{B^2 - d}{4n_1 n_2}).$$
A generalization which shows the multiplication of two forms of discriminant d is given by:

$$(n_1, B, \frac{B^2 - d}{4n_1}) \cdot (n_2, B, \frac{B^2 - d}{4n_2}) = (n_1n_2, B, \frac{B^2 - d}{4n_1n_2}).$$

Explicitly

$$(n_1x_1^2 + Bx_1y_1 + \frac{B^2 - d}{4n_1}y_1^2) \cdot (n_2x_2^2 + Bx_2y_2 + \frac{B^2 - d}{4n_2}y_2^2) = n_1n_2X^2 + BXY + \frac{B^2 - d}{4n_1n_2}Y^2$$

where

$$X = x_1x_2 - \frac{B^2 - d}{4n_1n_2}y_1y_2, \quad Y = n_1x_1y_2 + n_2y_1x_2 + By_1y_2.$$
A generalization which shows the multiplication of two forms of discriminant d is given by:

$$(n_1, B, \frac{B^2 - d}{4n_1}) \cdot (n_2, B, \frac{B^2 - d}{4n_2}) = (n_1n_2, B, \frac{B^2 - d}{4n_1n_2}).$$

Explicitly

$$(n_1x_1^2 + Bx_1y_1 + \frac{B^2 - d}{4n_1}y_1^2) \cdot (n_2x_2^2 + Bx_2y_2 + \frac{B^2 - d}{4n_2}y_2^2) = n_1n_2X^2 + BXY + \frac{B^2 - d}{4n_1n_2}Y^2$$

where

$$X = x_1x_2 - \frac{B^2 - d}{4n_1n_2}y_1y_2, \quad Y = n_1x_1y_2 + n_2y_1x_2 + By_1y_2.$$

We see that the inverse of (a, b, c) is $(c, b, a) \sim (a, -b, c)$.
Gen. comp.
For $n \in \mathbb{N}$ we say (a, b, c) represents n when there exists integers x, y such that $n = ax^2 + bxy + cy^2$.
For $n \in \mathbb{N}$ we say (a, b, c) represents n when there exists integers x, y such that $n = ax^2 + bxy + cy^2$.

We say (a, b, c) properly represents n when there exists coprime integers x, y such that $n = ax^2 + bxy + cy^2$.
For $n \in \mathbb{N}$ we say (a, b, c) represents n when there exists integers x, y such that $n = ax^2 + bxy + cy^2$.

We say (a, b, c) properly represents n when there exists coprime integers x, y such that $n = ax^2 + bxy + cy^2$.

We define $R((a, b, c), n)$ to be the number of representations of n by (a, b, c).
For $n \in \mathbb{N}$ we say (a, b, c) represents n when there exists integers x, y such that $n = ax^2 + bxy + cy^2$.

We say (a, b, c) properly represents n when there exists coprime integers x, y such that $n = ax^2 + bxy + cy^2$.

We define $R((a, b, c), n)$ to be the number of representations of n by (a, b, c).

Similarly, $R'(a, b, c), n)$ is the number of proper representations of n by (a, b, c).
For $n \in \mathbb{N}$ we say (a, b, c) represents n when there exists integers x, y such that $n = ax^2 + bxy + cy^2$.

We say (a, b, c) properly represents n when there exists coprime integers x, y such that $n = ax^2 + bxy + cy^2$.

We define $R((a, b, c), n)$ to be the number of representations of n by (a, b, c).

Similarly, $R'((a, b, c), n)$ is the number of proper representations of n by (a, b, c).

Also

$$ B(a, b, c, q) := \sum_{x,y} q^{ax^2 + bxy + cy^2} = \sum_{n \geq 0} R((a, b, c), n)q^n. $$
For $n \in \mathbb{N}$ we say (a, b, c) represents n when there exists integers x, y such that $n = ax^2 + bxy + cy^2$.

We say (a, b, c) properly represents n when there exists coprime integers x, y such that $n = ax^2 + bxy + cy^2$.

We define $R((a, b, c), n)$ to be the number of representations of n by (a, b, c).

Similarly, $R'((a, b, c), n)$ is the number of proper representations of n by (a, b, c).

Also

$$B(a, b, c, q) := \sum_{x, y} q^{ax^2+ bxy+ cy^2} = \sum_{n \geq 0} R((a, b, c), n) q^n.$$

The functions R and R' play a large role in the theory of binary quadratic forms, and we now consider a few of their most basic properties.
Theorem
Let d be a discriminant with conductor f. Let p be a prime and $K \in H(d)$.
We have:

1. p is represented by some class in $H(d)$ iff $(d, p) = 0$, and $p \nmid f$.
2. Suppose $p | d$ and $p \nmid f$. Then p is represented by exactly one class $A \in H(d)$ and $A = A - 1$. Moreover, $R(A, p) = R'(A, p) = w(d)$.
3. Suppose $(d, p) = 1$. Then p is represented by some class $A \in H(d)$, and $R(K, p) = R'(K, p) = \begin{cases} 0 & \text{if } K \neq A \\ A - 1 & \text{if } A \neq A - 1 \\ 2w(d) & \text{if } K = A = A - 1 \end{cases}$.
Theorem

Let d be a discriminant with conductor f. Let p be a prime and $K \in H(d)$.

We have:

1. p is represented by some class in $H(d)$ iff $\left(\frac{d}{p}\right) = 0, 1$ and $p \nmid f$.

2. Suppose $p | d$ and $p \nmid f$. Then p is represented by exactly one class $A \in H(d)$ and $A = A - 1$. Moreover, $R(A, p) = R'(A, p) = w(d)$.

3. Suppose $\left(\frac{d}{p}\right) = 1$. Then p is represented by some class $A \in H(d)$, and $R(K, p) = R'(K, p) = \begin{cases} 0 & \text{if } K \neq A, A - 1 \\ A \in \{A, A - 1\} & \text{if } K = A = A - 1 \\ w(d) & \text{otherwise} \end{cases}$.

[D., S.W.]
Theorem
Let d be a discriminant with conductor f. Let p be a prime and $K \in H(d)$.
We have:

1. p is represented by some class in $H(d)$ iff $\left(\frac{d}{p}\right) = 0, 1$ and $p \nmid f$.

2. Suppose $p \mid d$ and $p \nmid f$. Then p is represented by exactly one class $A \in H(d)$ and $A = A^{-1}$. Moreover, $R(A, p) = R'(A, p) = w(d)$.
Theorem

Let d be a discriminant with conductor f. Let p be a prime and $K \in H(d)$. We have:

1. p is represented by some class in $H(d)$ iff $\left(\frac{d}{p}\right) = 0, 1$ and $p \nmid f$.

2. Suppose $p \mid d$ and $p \nmid f$. Then p is represented by exactly one class $A \in H(d)$ and $A = A^{-1}$. Moreover, $R(A, p) = R'(A, p) = w(d)$.

3. Suppose $\left(\frac{d}{p}\right) = 1$. Then p is represented by some class $A \in H(d)$, and
Theorem

Let d be a discriminant with conductor f. Let p be a prime and $K \in H(d)$.

We have:

1. p is represented by some class in $H(d)$ iff $\left(\frac{d}{p} \right) = 0, 1$ and $p \nmid f$.

2. Suppose $p \mid d$ and $p \nmid f$. Then p is represented by exactly one class $A \in H(d)$ and $A = A^{-1}$. Moreover, $R(A, p) = R'(A, p) = w(d)$.

3. Suppose $\left(\frac{d}{p} \right) = 1$. Then p is represented by some class $A \in H(d)$, and

$$R(K, p) = R'(K, p) = \begin{cases} 0 & \text{if } K \neq A, A^{-1} \\ w(d) & \text{if } A \neq A^{-1}, K \in \{A, A^{-1}\} \\ 2w(d) & \text{if } K = A = A^{-1} \end{cases}$$

[D.], [S.W.]
Theorem

Let \((\alpha, \gamma)\) be a proper representation of \(n > 0\) by \((a, b, c)\) of discriminant \(d\). Then integers \(\beta, \delta, m\) can be determined in one and only one way to satisfy:

\[m \leq m < 2n, \quad m^2 \equiv d \pmod{4n}, \quad (\alpha \beta \gamma \delta) \in SL(2, \mathbb{Z}) \text{ takes } (a, b, c) \text{ to } (n, m, m^2 - d/4n).\]
Theorem

Let \((\alpha, \gamma)\) be a proper representation of \(n > 0\) by \((a, b, c)\) of discriminant \(d\). Then integers \(\beta, \delta, m\) can be determined in one and only one way to satisfy:

- \(0 \leq m < 2n\),
- \(m^2 \equiv d \pmod{4n}\),
- \((\alpha \beta \gamma \delta) \in \text{SL}(2, \mathbb{Z})\) takes \((a, b, c)\) to \((n, m, m^2 - d)\).
Theorem

Let \((\alpha, \gamma)\) be a proper representation of \(n > 0\) by \((a, b, c)\) of discriminant \(d\). Then integers \(\beta, \delta, m\) can be determined in one and only one way to satisfy:

- \(0 \leq m < 2n\),
- \(m^2 \equiv d \pmod{4n}\),

\[\text{[D.]} \]

Motivated by the previous theorem, we make the following definition.
Theorem
Let \((\alpha, \gamma)\) be a proper representation of \(n > 0\) by \((a, b, c)\) of discriminant \(d\). Then integers \(\beta, \delta, m\) can be determined in one and only one way to satisfy:

- \(0 \leq m < 2n\),
- \(m^2 \equiv d \pmod{4n}\),
- \(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2\mathbb{Z})\) takes \((a, b, c)\) to \((n, m, \frac{m^2-d}{4n})\).

[D.].
Theorem

Let \((\alpha, \gamma)\) be a proper representation of \(n > 0\) by \((a, b, c)\) of discriminant \(d\). Then integers \(\beta, \delta, m\) can be determined in one and only one way to satisfy:

- \(0 \leq m < 2n\),
- \(m^2 \equiv d \pmod{4n}\),
- \(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2\mathbb{Z})\) takes \((a, b, c)\) to \((n, m, \frac{m^2-d}{4n})\).

[D.]

Motivated by the previous theorem, we make the following definition.
Definition
Let f be a positive definite binary quadratic form of discriminant d. For $n \in \mathbb{N}$ let $H_f(n)$ be the number of integers m satisfying

- $0 \leq m < 2n$,
- $m^2 \equiv d \pmod{4n}$,
- $(n, m, \frac{m^2-d}{4n}) \sim f$.

Theorem
With f as above, we have

$$R'(f, n) = w(d)H_f(n),$$

and

$$R(f, n) = \sum_{k^2|n} R'(f, n/k^2).$$
Definition
Let f be a positive definite binary quadratic form of discriminant d. For $n \in \mathbb{N}$ let $H_f(n)$ be the number of integers m satisfying

- $0 \leq m < 2n$,
- $m^2 \equiv d \pmod{4n}$,
- $(n, m, \frac{m^2-d}{4n}) \sim f$.

Theorem
With f as above, we have

$$R'(f, n) = w(d) H_f(n),$$

and
Definition
Let f be a positive definite binary quadratic form of discriminant d. For $n \in \mathbb{N}$ let $H_f(n)$ be the number of integers m satisfying
- $0 \leq m < 2n$,
- $m^2 \equiv d \pmod{4n}$,
- $(n, m, \frac{m^2 - d}{4n}) \sim f$.

Theorem
With f as above, we have

$$R'(f, n) = w(d)H_f(n),$$

and

$$R(f, n) = \sum_{k^2 | n} R'(f, \frac{n}{k^2})$$

[D.], [N.Z.M.].
Theorem

Let d be a discriminant. If n_1, n_2 are pairwise prime positive integers and $K \in H(d)$, then

$$R(K, n_1 \cdot n_2) = \frac{1}{w(d)} \sum_{K_1 \cdot K_2 = K} R(K_1, n_1) \cdot R(K_2, n_2)$$

where the summation is taken over all $K_1, K_2 \in H(d)$ such that $K_1 \cdot K_2 = K$ [S.W.].
Theorem

Let d be a discriminant. If n_1, n_2 are pairwise prime positive integers and $K \in H(d)$, then

$$R(K, n_1 \cdot n_2) = \frac{1}{w(d)} \sum_{K_1 \cdot K_2 = K} R(K_1, n_1) \cdot R(K_2, n_2)$$

where the summation is taken over all $K_1, K_2 \in H(d)$ such that $K_1 \cdot K_2 = K$ [S.W.].

The proof hinges on the lemma

$$H_K(n_1 \cdot n_2) = \sum_{K_1 \cdot K_2 = K} H_{K_1}(n_1) \cdot H_{K_2}(n_2)$$

which Habib and Williams give in [H.W.]. The proof is elementary yet somewhat technical.
Proof of Theorem:

\[
\frac{R(K, n_1 \cdot n_2)}{w(d)} = \sum_{m^2 | n_1 \cdot n_2} H_K \left(\frac{n_1 \cdot n_2}{m^2} \right)
\]
Proof of Theorem:

\[
\frac{R(K, n_1 \cdot n_2)}{w(d)} = \sum_{m^2 | n_1 \cdot n_2} H_K \left(\frac{n_1 \cdot n_2}{m^2} \right)
\]

\[
= \sum_{m_1^2 | n_1} \sum_{m_2^2 | n_2} H_K \left(\frac{n_1}{m_1^2} \cdot \frac{n_2}{m_2^2} \right)
\]
Proof of Theorem:

\[
\frac{R(K, n_1 \cdot n_2)}{w(d)} = \sum_{m^2 | n_1 \cdot n_2} H_K \left(\frac{n_1 \cdot n_2}{m^2} \right)
\]

\[
= \sum_{m_1^2 | n_1} \sum_{m_2^2 | n_2} H_K \left(\frac{n_1}{m_1^2} \cdot \frac{n_2}{m_2^2} \right)
\]

\[
= \sum_{m_1^2 | n_1} \sum_{m_2^2 | n_2} \sum_{K_1 \cdot K_2 = K} H_{K_1} \left(\frac{n_1}{m_1^2} \right) H_{K_2} \left(\frac{n_2}{m_2^2} \right)
\]
Proof of Theorem:

\[
\frac{R(K, n_1 \cdot n_2)}{w(d')} = \sum_{m^2 | n_1 \cdot n_2} H_K \left(\frac{n_1 \cdot n_2}{m^2} \right)
\]

\[
= \sum_{m_1^2 | n_1} \sum_{m_2^2 | n_2} H_K \left(\frac{n_1}{m_1^2} \cdot \frac{n_2}{m_2^2} \right)
\]

\[
= \sum_{m_1^2 | n_1} \sum_{m_2^2 | n_2} \sum_{K_1 \cdot K_2 = K} H_{K_1} \left(\frac{n_1}{m_1^2} \right) H_{K_2} \left(\frac{n_2}{m_2^2} \right)
\]

\[
= \sum_{K_1 \cdot K_2 = K} \sum_{m_1^2 | n_1} H_{K_1} \left(\frac{n_1}{m_1^2} \right) \sum_{m_2^2 | n_2} H_{K_2} \left(\frac{n_2}{m_2^2} \right)
\]
Proof of Theorem:

\[
\frac{R(K, n_1 \cdot n_2)}{w(d)} = \sum_{m^2 | n_1 \cdot n_2} H_K \left(\frac{n_1 \cdot n_2}{m^2} \right)
\]

\[
= \sum_{m_1^2 | n_1} \sum_{m_2^2 | n_2} H_K \left(\frac{n_1}{m_1^2} \cdot \frac{n_2}{m_2^2} \right)
\]

\[
= \sum_{m_1^2 | n_1} \sum_{m_2^2 | n_2} \sum_{K_1 \cdot K_2 = K} H_{K_1} \left(\frac{n_1}{m_1^2} \right) H_{K_2} \left(\frac{n_2}{m_2^2} \right)
\]

\[
= \sum_{K_1 \cdot K_2 = K} H_{K_1} \left(\frac{n_1}{m_1^2} \right) \sum_{m_2^2 | n_2} H_{K_2} \left(\frac{n_2}{m_2^2} \right)
\]

\[
= \sum_{K_1 \cdot K_2 = K} \frac{R(K_1, n_1)}{w(d)} \frac{R(K_2, n_2)}{w(d)}
\]
Definition

Let d be a discriminant and $n \in \mathbb{N}$. Let

$$H(d) = \{A_1^{k_1} \cdots A_r^{k_r} | 0 \leq k_1 < h_1, \ldots, 0 \leq k_r < h_r\}$$

with

$$h_1 \cdots h_r = |H(d)|.$$

Definition

Let \(d \) be a discriminant and \(n \in \mathbb{N} \). Let
\[H(d) = \{ A_1^{k_1} \cdots A_r^{k_r} | 0 \leq k_1 < h_1, \ldots, 0 \leq k_r < h_r \} \]
with \(h_1 \cdots h_r = |H(d)| \).

For \(K = A_1^{k_1} \cdots A_r^{k_r} \in H(d) \) and \(M = A_1^{m_1} \cdots A_r^{m_r} \in H(d) \),
with \(k_i, m_i \in \{0, 1, \ldots, h_i - 1\} \), we define

\[\langle K, M \rangle = \frac{k_1 m_1}{h_1} + \cdots + \frac{k_r m_r}{h_r}. \]
Definition

Let d be a discriminant and $n \in \mathbb{N}$. Let

$$H(d) = \{A_1^{k_1} \cdots A_r^{k_r} | 0 \leq k_1 < h_1, \ldots, 0 \leq k_r < h_r\}$$

with

$$h_1 \cdots h_r = |H(d)|.$$

For $K = A_1^{k_1} \cdots A_r^{k_r} \in H(d)$ and $M = A_1^{m_1} \cdots A_r^{m_r} \in H(d)$, with $k_i, m_i \in \{0, 1, \ldots, h_i - 1\}$, we define

$$\langle K, M \rangle = \frac{k_1 m_1}{h_1} + \cdots + \frac{k_r m_r}{h_r}.$$

Note that $K_1 \cdot K_2 = K$ implies $e^{2\pi i \langle K, M \rangle} = e^{2\pi i \langle K_1, M \rangle} e^{2\pi i \langle K_2, M \rangle}$.
Definition

Let d be a discriminant and $n \in \mathbb{N}$. Let

$$H(d) = \{A_1^{k_1} \cdots A_r^{k_r} | 0 \leq k_1 < h_1, \ldots, 0 \leq k_r < h_r\}$$

with $h_1 \cdots h_r = |H(d)|$.

For $K = A_1^{k_1} \cdots A_r^{k_r} \in H(d)$ and $M = A_1^{m_1} \cdots A_r^{m_r} \in H(d)$, with $k_i, m_i \in \{0, 1, \ldots, h_i - 1\}$, we define

$$\langle K, M \rangle = \frac{k_1 m_1}{h_1} + \cdots + \frac{k_r m_r}{h_r}.$$

Note that $K_1 \cdot K_2 = K$ implies $e^{2\pi i \langle K, M \rangle} = e^{2\pi i \langle K_1, M \rangle} e^{2\pi i \langle K_2, M \rangle}$.

We define

$$F(M, n) = \frac{1}{w(d)} \sum_{K \in H(d)} \cos 2\pi \langle K, M \rangle \cdot R(K, n).$$
Theorem

$F(M, n)$ is a multiplicative function of n.
Ramanujan's eta-products and binary quadratic forms

Frank Patane

Theorem

$F(M, n)$ is a multiplicative function of n.

Proof:

\[
F(M, n) = \frac{1}{w(d)} \sum_{K \in H(d)} \cos 2\pi \langle K, M \rangle \cdot R(K, n)
\]

\[
= \frac{1}{2w(d)} \sum_{K \in H(d)} (e^{2\pi i \langle K, M \rangle} + e^{-2\pi i \langle K, M \rangle}) R(K, n)
\]
Theorem

\(F(M, n)\) is a multiplicative function of \(n\).

Proof:

\[
F(M, n) = \frac{1}{w(d)} \sum_{K \in H(d)} \cos 2\pi \langle K, M \rangle \cdot R(K, n)
\]

\[
= \frac{1}{2w(d)} \sum_{K \in H(d)} (e^{2\pi i \langle K, M \rangle} + e^{-2\pi i \langle K, M \rangle}) R(K, n)
\]

\[
= \frac{1}{2w(d)} \sum_{K \in H(d)} (e^{2\pi i \langle K, M \rangle} R(K, n) + e^{2\pi i \langle K^{-1}, M \rangle} R(K^{-1}, n))
\]
Theorem

\(F(M, n) \) is a multiplicative function of \(n \).

Proof:

\[
F(M, n) = \frac{1}{w(d)} \sum_{K \in H(d)} \cos 2\pi \langle K, M \rangle \cdot R(K, n)
\]

\[
= \frac{1}{2w(d)} \sum_{K \in H(d)} (e^{2\pi i \langle K, M \rangle} + e^{-2\pi i \langle K, M \rangle}) R(K, n)
\]

\[
= \frac{1}{2w(d)} \sum_{K \in H(d)} (e^{2\pi i \langle K, M \rangle} R(K, n) + e^{2\pi i \langle K^{-1}, M \rangle} R(K^{-1}, n))
\]

\[
= \frac{1}{w(d)} \sum_{K \in H(d)} e^{2\pi i \langle K, M \rangle} R(K, n).
\]
Note that $K_1 \cdot K_2 = K$ implies $e^{2\pi i \langle K, M \rangle} = e^{2\pi i \langle K_1, M \rangle} e^{2\pi i \langle K_2, M \rangle}$.

We see

$$F(M, n_1 n_2) = \frac{1}{w(d)} \sum_{K \in H(d)} e^{2\pi i \langle K, M \rangle} R(K, n_1 n_2)$$
Note that $K_1 \cdot K_2 = K$ implies $e^{2\pi i \langle K, M \rangle} = e^{2\pi i \langle K_1, M \rangle} e^{2\pi i \langle K_2, M \rangle}$. We see

$$F(M, n_1 n_2) = \frac{1}{w(d)} \sum_{K \in H(d)} e^{2\pi i \langle K, M \rangle} R(K, n_1 n_2)$$

$$= \frac{1}{w(d)^2} \sum_{K \in H(d)} e^{2\pi i \langle K, M \rangle} \sum_{K_1 \cdot K_2 = K} R(K_1, n_1) R(K_2, n_2)$$
Note that $K_1 \cdot K_2 = K$ implies $e^{2\pi i \langle K, M \rangle} = e^{2\pi i \langle K_1, M \rangle} e^{2\pi i \langle K_2, M \rangle}$.

We see

\[
F(M, n_1 n_2)
= \frac{1}{w(d)} \sum_{K \in H(d)} e^{2\pi i \langle K, M \rangle} R(K, n_1 n_2)
= \frac{1}{w(d)^2} \sum_{K \in H(d)} e^{2\pi i \langle K, M \rangle} \sum_{K_1 \cdot K_2 = K} R(K_1, n_1) R(K_2, n_2)
= \frac{1}{w(d)^2} \sum_{K \in H(d)} \sum_{K_1 \cdot K_2 = K} e^{2\pi i \langle K_1, M \rangle} e^{2\pi i \langle K_2, M \rangle} R(K_1, n_1) R(K_2, n_2)
\]
Note that $K_1 \cdot K_2 = K$ implies $e^{2\pi i \langle K, M \rangle} = e^{2\pi i \langle K_1, M \rangle} e^{2\pi i \langle K_2, M \rangle}$.

We see

\[
F(M, n_1 n_2) = \frac{1}{w(d)} \sum_{K \in H(d)} e^{2\pi i \langle K, M \rangle} R(K, n_1 n_2)
\]

\[
= \frac{1}{w(d)^2} \sum_{K \in H(d)} e^{2\pi i \langle K, M \rangle} \sum_{K_1 \cdot K_2 = K} R(K_1, n_1) R(K_2, n_2)
\]

\[
= \frac{1}{w(d)^2} \sum_{K \in H(d)} \sum_{K_1 \cdot K_2 = K} e^{2\pi i \langle K_1, M \rangle} e^{2\pi i \langle K_2, M \rangle} R(K_1, n_1) R(K_2, n_2)
\]

\[
= F(M, n_1) F(M, n_2).
\]
Hecke Operators

In many cases, $F(M, n)$ has the additional property of being an eigenform for all Hecke operators.
Hecke Operators

In many cases, $F(M,n)$ has the additional property of being an eigenform for all Hecke operators.

Let (a, b, c) have the associated theta series $\sum_{n>0} h(n)q^n$. In [He.], Hecke defines the operator T_p as

$$T_p \left(\sum_{n=0}^{\infty} h(n)q^n \right) = \sum_{n=0}^{\infty} (h(pn) + \left(\frac{-d}{p} \right) h(n/p))q^n. \quad (4.1)$$

with $h(n/p) = 0$ if $p \nmid n$.

Hecke Operators

In many cases, $F(M, n)$ has the additional property of being an eigenform for all Hecke operators.

Let (a, b, c) have the associated theta series $\sum_{n>0} h(n)q^n$. In [He.], Hecke defines the operator T_p as

$$T_p \left(\sum_{n=0}^{\infty} h(n)q^n \right) = \sum_{n=0}^{\infty} (h(pn) + \left(\frac{-d}{p} \right) h(n/p))q^n. \quad (4.1)$$

with $h(n/p) = 0$ if $p \nmid n$.

Let S be the set of all linear combinations of theta series for the forms of discriminant d.
Hecke Operators

In many cases, $F(M, n)$ has the additional property of being an eigenform for all Hecke operators.

Let (a, b, c) have the associated theta series $\sum_{n>0} h(n)q^n$. In [He.], Hecke defines the operator T_p as

$$T_p \left(\sum_{n=0}^{\infty} h(n)q^n \right) = \sum_{n=0}^{\infty} \left(h(pn) + \left(\frac{-d}{p} \right) h(n/p) \right)q^n. \quad (4.1)$$

with $h(n/p) = 0$ if $p \nmid n$.

Let S be the set of all linear combinations of theta series for the forms of discriminant d.

Hecke showed that for $s \in S$ we will always have $T_p(s) \in S$. [He.].
Hecke Operators

In many cases, $F(M, n)$ has the additional property of being an eigenform for all Hecke operators.

Let (a, b, c) have the associated theta series $\sum_{n>0} h(n)q^n$. In [He.], Hecke defines the operator T_p as

$$T_p \left(\sum_{n=0}^{\infty} h(n)q^n \right) = \sum_{n=0}^{\infty} (h(pn) + \left(\frac{-d}{p} \right) h(n/p))q^n. \quad (4.1)$$

with $h(n/p) = 0$ if $p \nmid n$.

Let S be the set of all linear combinations of theta series for the forms of discriminant d.

Hecke showed that for $s \in S$ we will always have $T_p(s) \in S$. [He.].

If $T_p(s) = s \cdot \lambda_p$ for some constant λ_p, then we call s an eigenform of T_p with eigenvalue λ_p.
Let $s = \sum h(n)q^n$ be an eigenform for all Hecke operators.
Let $s = \sum h(n)q^n$ be an eigenform for all Hecke operators.

We have

$$\lambda_p h(n) = h(pn) + \left(\frac{-d}{p} \right) h(n/p),$$

(4.2)

for any positive integer n and any prime p.
Let $s = \sum h(n)q^n$ be an eigenform for all Hecke operators.

We have

$$\lambda_p h(n) = h(pn) + \left(\frac{-d}{p} \right) h(n/p),$$

(4.2)

for any positive integer n and any prime p.

(4.2) implies h is multiplicative.
Let \(s = \sum h(n)q^n \) be an eigenform for all Hecke operators.

We have

\[
\lambda_p h(n) = h(pn) + \left(\frac{-d}{p} \right) h(n/p),
\]

(4.2)

for any positive integer \(n \) and any prime \(p \).

(4.2) implies \(h \) is multiplicative.

Furthermore \(h \) satisfies

\[
h(p^{k+1}) = h(p)h(p^k) - \left(\frac{-d}{p} \right) h(p^{k-1}).
\]

(4.3)
We now give an example showing multiplicativity does not imply being an eigenform for all T_p.

Let us take $d = -224 = 2^5 \cdot 7$.

Principal Genus $(1, 0, 56), (8, 8, 9)$

Second Genus $(4, 4, 15), (7, 0, 8)$

Third Genus $(3, 2, 19), (3, -2, 19)$

Fourth Genus $(5, 4, 12), (5, -4, 12)$
We now give an example showing multiplicativity does not imply being an eigenform for all T_p.

Let us take $d = -224 = 2^5 \cdot 7$.
We now give an example showing multiplicativity does not imply being an eigenform for all T_p.

Let us take $d = -224 = 2^5 \cdot 7$.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CL(-224)</td>
<td>$\cong \mathbb{Z}_4 \times \mathbb{Z}_2$</td>
<td></td>
</tr>
<tr>
<td>Principal Genus</td>
<td>$(1, 0, 56), (8, 8, 9)$</td>
<td></td>
</tr>
<tr>
<td>Second Genus</td>
<td>$(4, 4, 15), (7, 0, 8)$</td>
<td></td>
</tr>
<tr>
<td>Third Genus</td>
<td>$(3, 2, 19), (3, -2, 19)$</td>
<td></td>
</tr>
<tr>
<td>Fourth Genus</td>
<td>$(5, 4, 12), (5, -4, 12)$</td>
<td></td>
</tr>
</tbody>
</table>
We now give an example showing multiplicativity does not imply being an eigenform for all T_p.

Let us take $d = -224 = 2^5 \cdot 7$.

<table>
<thead>
<tr>
<th></th>
<th>$\mathbb{Z}_4 \times \mathbb{Z}_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Genus</td>
<td>$(1, 0, 56), (8, 8, 9)$</td>
</tr>
<tr>
<td>Second Genus</td>
<td>$(4, 4, 15), (7, 0, 8)$</td>
</tr>
<tr>
<td>Third Genus</td>
<td>$(3, 2, 19), (3, -2, 19)$</td>
</tr>
<tr>
<td>Fourth Genus</td>
<td>$(5, 4, 12), (5, -4, 12)$</td>
</tr>
</tbody>
</table>

For any form A from the third or fourth genus above,

$$F(A, n) = \frac{1}{2} \left[R((1, 0, 56), n) - R((8, 8, 9), n) + R((4, 4, 15), n) - R((7, 0, 8), n) \right]$$
\(F(A, n) \) is multiplicative yet \(T_2 \) acting on \(\sum_{n>0} F(A, n)q^n \) gives

\[
\sum_{n>0} [R((1, 0, 14), n) - R((2, 0, 7), n)]q^{2n}.
\]

(4.4)
\(F(A, n) \) is multiplicative yet \(T_2 \) acting on \(\sum_{n>0} F(A, n)q^n \) gives

\[
\sum_{n>0} [R((1, 0, 14), n) - R((2, 0, 7), n)]q^{2n}.
\]

(4.4)

(4.4) is not a multiple of \(F(A, n) \), and hence \(F(A, n) \) is not an eigenform under \(T_2 \).
$F(A, n)$ is multiplicative yet T_2 acting on $\sum_{n>0} F(A, n)q^n$ gives

$$\sum_{n>0} [R((1, 0, 14), n) - R((2, 0, 7), n)]q^{2n}. \quad (4.4)$$

(4.4) is not a multiple of $F(A, n)$, and hence $F(A, n)$ is not an eigenform under T_2.

The above failure of $F(A, n)$ to be an eigenform under T_2 is not caused simply because $p = 2$.
$F(A, n)$ is multiplicative yet T_2 acting on $\sum_{n>0} F(A, n)q^n$ gives

$$\sum_{n>0} [R((1, 0, 14), n) - R((2, 0, 7), n)]q^{2n}. \quad (4.4)$$

(4.4) is not a multiple of $F(A, n)$, and hence $F(A, n)$ is not an eigenform under T_2.

The above failure of $F(A, n)$ to be an eigenform under T_2 is not caused simply because $p = 2$.

Indeed, for any finite list of primes, $\{p_1, \ldots, p_k\}$, we can find a discriminant such that at least one multiplicative combination $F(M, n)$ will fail to be an eigenform under T_{p_i} for all $1 \leq i \leq k$.
When \(F(M, n) \) enjoys the property of being an eigenform for all Hecke operators, computing \(F(M, p) \) for all primes \(p \) suffices to compute \(F(M, n) \).
When $F(M, n)$ enjoys the property of being an eigenform for all Hecke operators, computing $F(M, p)$ for all primes p suffices to compute $F(M, n)$.

Before we revisit the eta-products discussed by Ramanujan, we give a theorem which connects binary quadratic forms to eta-products.
When $F(M, n)$ enjoys the property of being an eigenform for all Hecke operators, computing $F(M, p)$ for all primes p suffices to compute $F(M, n)$.

Before we revisit the eta-products discussed by Ramanujan, we give a theorem which connects binary quadratic forms to eta-products.

Theorem

If m, s are positive integers with $24s - m > 0$, then

$$
\frac{B(6m, m, s, q) - B(6m, 5m, s + m, q)}{2} = q^s E(q^m)E(q^{24s-m}).
$$

(5.1)
In the beginning of the talk we defined $a_m(n)$ by

$$\sum_{n=1}^{\infty} a_m(n)q^n := qE(q^m)E(q^{24-m}).$$

(5.2)
In the beginning of the talk we defined $a_m(n)$ by

$$
\sum_{n=1}^{\infty} a_m(n) q^n := qE(q^m)E(q^{24-m}).
$$

(5.2)

Setting $s = 1$ in the previous Theorem we arrive at

$$
\frac{B(6m, m, 1, q) - B(6m, 5m, 1 + m, q)}{2} = qE(q^m)E(q^{24-m}).
$$

(5.3)

for $m = 1, \ldots, 12$.

In the beginning of the talk we defined $a_m(n)$ by

$$\sum_{n=1}^{\infty} a_m(n)q^n := qE(q^m)E(q^{24-m}).$$ \hspace{1cm} (5.2)

Setting $s = 1$ in the previous Theorem we arrive at

$$\frac{B(6m, m, 1, q) - B(6m, 5m, 1 + m, q)}{2} = qE(q^m)E(q^{24-m}).$$ \hspace{1cm} (5.3)

for $m = 1, \ldots, 12$.

Ramanujan saw that for $m = 1, 2, 3, 4, 6, 8, 12$, the Dirichlet series $\sum_{n=1}^{\infty} \frac{a_m(n)}{n^s}$ has an Euler product.
In the beginning of the talk we defined $a_m(n)$ by

$$
\sum_{n=1}^\infty a_m(n)q^n := qE(q^m)E(q^{24-m}).
$$

(5.2)

Setting $s = 1$ in the previous Theorem we arrive at

$$
\frac{B(6m, m, 1, q) - B(6m, 5m, 1 + m, q)}{2} = qE(q^m)E(q^{24-m}).
$$

(5.3)

for $m = 1, \ldots, 12$.

Ramanujan saw that for $m = 1, 2, 3, 4, 6, 8, 12$, the Dirichlet series $\sum_{n=1}^\infty \frac{a_m(n)}{n^s}$ has an Euler product.

In other words, $a_m(n)$ is multiplicative for $m = 1, 2, 3, 4, 6, 8, 12$.
For $s = 1$ and $d = -m(24 - m)$ we have

| m | d | $|H(m)|$ |
|-----|-----|---------|
| 1 | -23 | 3 |
| 2 | -44 | 3 |
| 3 | -63 | 4 |
| 4 | -80 | 4 |
| 5 | -95 | 8 |
| 6 | -108| 3 |
| 7 | -119| 10 |
| 8 | -128| 4 |
| 9 | -135| 6 |
| 10 | -140| 6 |
| 11 | -143| 10 |
| 12 | -144| 4 |
When $m = 1, 2, 3, 4, 6, 8, 12$ we get that $H(m)$ is cyclic of order 3 or 4 and,
When \(m = 1, 2, 3, 4, 6, 8, 12 \) we get that \(H(m) \) is cyclic of order 3 or 4 and,

\[
F(A, n) = \frac{R((6m, m, 1, n)) - R((6m, 5m, 1 + m, n))}{2} \quad (5.4)
\]

where \(A \) is a generator of \(H(m) \).
When \(m = 1, 2, 3, 4, 6, 8, 12 \) we get that \(H(m) \) is cyclic of order 3 or 4 and,

\[
F(A, n) = \frac{R((6m, m, 1, n)) - R((6m, 5m, 1 + m, n))}{2} \tag{5.4}
\]

where \(A \) is a generator of \(H(m) \).

The \(F(A, n) \) in (5.4) are eigenforms for all Hecke operators and we can easily deduce their values and write an Euler product for the corresponding Dirichlet series.
Let us consider $d = -135$. Theorem (8) with $s = 1$ and $m = 9$ gives

$$\sum_{n=1}^{\infty} a(n)q^n := \sum_{n=1}^{\infty} \frac{R((1, 1, 34), n) - R((4, 3, 9), n)}{2} q^n$$ \hspace{1cm} (6.1)

$$= qE(q^9)E(q^{15}),$$ \hspace{1cm} (6.2)
Let us consider $d = -135$. Theorem (8) with $s = 1$ and $m = 9$ gives

$$
\sum_{n=1}^{\infty} a(n)q^n := \sum_{n=1}^{\infty} \frac{R((1, 1, 34), n) - R((4, 3, 9), n)}{2} q^n \quad (6.1)
$$

$$
= qE(q^9)E(q^{15}), \quad (6.2)
$$

We note that the above $a(n)$ is not multiplicative.
Discriminant -135 is isomorphic to \mathbb{Z}_6:

\[
\begin{array}{|c|c|c|c|}
 \hline
 & \text{CL}(-135) \cong C_6 & (\frac{p}{5}) & (\frac{p}{3}) \\
 \hline
 \text{Principal Genus} & (1, 1, 34), (4, 3, 9), (4, -3, 9) & +1 & +1 \\
 \hline
 \text{Second Genus} & (5, 5, 8), (2, 1, 17), (2, -1, 17) & -1 & -1 \\
 \hline
\end{array}
\]
Discriminant -135 is isomorphic to \mathbb{Z}_6:

<table>
<thead>
<tr>
<th>CL(-135) $\cong C_6$</th>
<th>$(\frac{p}{5})$</th>
<th>$(\frac{p}{3})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Genus</td>
<td>$(1, 1, 34), (4, 3, 9), (4, -3, 9)$</td>
<td>$+1$</td>
</tr>
<tr>
<td>Second Genus</td>
<td>$(5, 5, 8), (2, 1, 17), (2, -1, 17)$</td>
<td>-1</td>
</tr>
</tbody>
</table>

We find that

$$F((2, 1, 17), n) = \frac{R((1, 1, 34), n) - R((4, 3, 9), n)}{2} + \frac{R((2, 1, 17), n) - R((5, 5, 8), n)}{2}.$$ \hspace{1cm} (6.3)

$$+ \frac{R((2, 1, 17), n) - R((5, 5, 8), n)}{2}.$$ \hspace{1cm} (6.4)
For a class group isomorphic to \mathbb{Z}_6, $F(A, n)$ is no longer just a simple difference of two theta series.
For a class group isomorphic to \mathbb{Z}_6, $F(A, n)$ is no longer just a simple difference of two theta series.

We need to also employ the product

$$\sum_{n=1}^{\infty} b(n)q^n := \sum_{n=1}^{\infty} \frac{R((2, 1, 17), n) - R((5, 5, 8), n)}{2} q^n \quad (6.5)$$

$$= q^2 E(q^3) E(q^{45}). \quad (6.6)$$
For a class group isomorphic to \mathbb{Z}_6, $F(A, n)$ is no longer just a simple difference of two theta series.

We need to also employ the product

$$
\sum_{n=1}^{\infty} b(n)q^n := \sum_{n=1}^{\infty} \frac{R((2, 1, 17), n) - R((5, 5, 8), n)}{2} q^n \quad (6.5)
$$

$$
= q^2 E(q^3)E(q^{45}). \quad (6.6)
$$

We find that both $qE(q^9)E(q^{15}) \pm q^2 E(q^3)E(q^{45})$ are eigenforms for all Hecke operators. Thus we can find the coefficients of $qE(q^9)E(q^{15})$ and $q^2 E(q^3)E(q^{45})$. Explicit.
Thank you!!

Reduction of forms

We would like to have a canonical representative for a given equivalence class of binary quadratic forms.
We would like to have a canonical representative for a given equivalence class of binary quadratic forms.

The positive definite form \((a, b, c)\) is said to be reduced if

\[-|a| < b \leq |a| < |c|,
\]

or

\[0 \leq b \leq |a| = |c|.
\]
We would like to have a canonical representative for a given equivalence class of binary quadratic forms.

The positive definite form \((a, b, c)\) is said to be *reduced* if

\[-|a| < b \leq |a| < |c|, \]

or

\[0 \leq b \leq |a| = |c|. \]

Each equivalence class of positive definite binary quadratic forms has a unique reduced form [B.], [D.].
General Composition

Let \((a_1, b_1, c_1)\) and \((a_2, b_2, c_2)\) be two binary quadratic forms of discriminant \(d\). Take \(t = \gcd(a_1, a_2, (b_1 + b_2)/2)\), and let \(u, v, w\) be integers such that

\[
a_1 u + a_2 v + \frac{b_1 + b_2}{2} w = t.
\]
General Composition

Let \((a_1, b_1, c_1)\) and \((a_2, b_2, c_2)\) be two binary quadratic forms of discriminant \(d\). Take \(t = \gcd(a_1, a_2, (b_1 + b_2)/2)\), and let \(u, v, w\) be integers such that

\[
a_1 u + a_2 v + \frac{b_1 + b_2}{2} w = t.
\]

Then \((a_1, b_1, c_1) \cdot (a_2, b_2, c_2) = (a_3, b_3, c_3)\), where

\[
a_3 = \frac{a_1 a_2}{t^2},
\]

\[
b_3 = b_2 + \frac{a_2(b_1 - b_2)v - 2a_2c_2w}{t},
\]

\[
c_3 = \frac{b_3^2 - d}{4a_3},
\]

[B.]. Back to presentation.
The eigenvalues for $qE(q^9)E(q^{15}) \pm q^2 E(q^3)E(q^{45})$ will depend on which form if any represents the prime p.
The eigenvalues for $qE(q^9)E(q^{15}) \pm q^2E(q^3)E(q^{45})$ will depend on which form if any represents the prime p.

We can examine the factorization of the Weber class polynomial $W_{135}(x) = x^6 - 3x^5 - 3x^4 + 2x^3 + 30x^2 + 33x - 1$ modulo p to determine which form represents p:
The eigenvalues for \(qE(q^9)E(q^{15}) \pm q^2 E(q^3)E(q^{45}) \) will depend on which form if any represents the prime \(p \).

We can examine the factorization of the Weber class polynomial \(W_{135}(x) = x^6 - 3x^5 - 3x^4 + 2x^3 + 30x^2 + 33x - 1 \) modulo \(p \) to determine which form represents \(p \):

For a prime \(p \) with \(\left(\frac{-135}{p} \right) = 1 \) we have

1. \(p \) is represented by the form \((1, 1, 34)\) if and only if \(W_{135}(x) \) splits completely modulo \(p \).

2. \(p \) is represented by the form \((4, 3, 9)\) if and only if \(W_{135}(x) \) factors into two irreducible cubic polynomials modulo \(p \).

3. \(p \) is represented by the form \((5, 5, 8)\) if and only if \(W_{135}(x) \) factors into three irreducible quadratic polynomials modulo \(p \).

4. \(p \) is represented by the form \((2, 1, 17)\) if and only if \(W_{135}(x) \) remains irreducible modulo \(p \).
We derive

\[a(p^\alpha) = \begin{cases}
0 & p = 3, \ \alpha > 0, \\
(-1)^\alpha & p = 5, \\
1 + \alpha & (1, 1, 34, p) > 0, \\
(-1)^\alpha(1 + \alpha) & p \neq 5 \ (5, 5, 8, p) > 0, \\
U(\alpha) & (4, 3, 9, p) > 0, \\
V(\alpha) & (2, 1, 17, p) > 0, \\
\frac{1 + (-1)^\alpha}{2} & \left(\frac{-135}{p}\right) = -1, \\
\end{cases} \] (8.1)

and
Ramanujan's eta-products and binary quadratic forms

Frank Patane

\[b(p^\alpha) = \begin{cases}
0 & p = 3, \quad \alpha > 0, \\
1 & p = 5, \\
1 + \alpha & p \neq 5, \quad (1, 1, 34, p) + (5, 5, 8, p) > 0, \\
U(\alpha) & (4, 3, 9, p) + (2, 1, 17, p) > 0, \\
\frac{1+(-1)^\alpha}{2} & \left(\frac{-135}{p}\right) = -1,
\end{cases} \]

(8.2)

where

\[U(z) := \frac{\sin(2\pi(z+1)/3)}{\sin(2\pi/3)}, \]

(8.3)

and

\[V(z) := \frac{\sin(\pi(z+1)/3)}{\sin(\pi/3)}. \]

(8.4)
We find

\[\sum_{n>0} \frac{b(n)}{n^s} = \left(\frac{1}{1 - 5^{-s}} \right) \cdot \prod_r \frac{1}{(1 - r^{-s})^2} \times \prod_q \frac{1}{1 + q^{-s} + q^{-2s}} \cdot \prod_p \frac{1}{1 - p^{-2s}} \]

(8.5)

where

- \(r \neq 5 \) is prime with \((1, 1, 34, r) + (5, 5, 8, r) > 0\)
- \(q \) is prime with \((4, 3, 9, q) + (2, 1, 17, q) > 0\)
- \(p \) is prime with \(\left(\frac{-135}{p} \right) = -1 \).
Also we have

$$
\sum_{n>0} \frac{a(n)}{n^s} = \left(\frac{1}{1 + 5^{-s}} \right) \cdot \prod_r \frac{1}{(1 - r^{-s})^2} \\
\times \prod_t \frac{1}{(1 + t^{-s})^2} \cdot \prod_q \frac{1}{1 + q^{-s} + q^{-2s}} \\
\times \prod_w \frac{1}{1 - w^{-s} + w^{-2s}} \cdot \prod_p \frac{1}{1 - p^{-2s}}
$$

(8.7) \hspace{1cm} (8.8) \hspace{1cm} (8.9)

where r is prime with $(1, 1, 34, r) > 0$

$t \neq 5$ is a prime with $(5, 5, 8, t) > 0$

q is prime with $(4, 3, 9, q) > 0$

w is a prime with $(2, 1, 17, w) > 0$

p is prime with $\left(\frac{-135}{p} \right) = -1$.
We can extract the Fourier coefficients of each product from $q E(q^9)E(q^{15}) + q^2 E(q^3)E(q^{45})$ by using congruences.
We can extract the Fourier coefficients of each product from $qE(q^9)E(q^{15}) + q^2E(q^3)E(q^{45})$ by using congruences. We have

$$[q^n]qE(q^9)E(q^{15}) = \begin{cases} a(n) & n \equiv 1 \pmod{3} \\ 0 & n \equiv 0, 2 \pmod{3}, \end{cases}$$

and

$$[q^n]q^2E(q^3)E(q^{45}) = \begin{cases} a(n) & n \equiv 2 \pmod{3} \\ 0 & n \equiv 0, 1 \pmod{3}. \end{cases}$$